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Simulating Seismic Wave Propagation in 3D Elastic Media 

Using Staggered-Grid Finite Differences 

by Robert W. Graves 

Abstract This article provides an overview of the application of the staggered- 
grid finite-difference technique to model wave propagation problems in 3D elastic 
media. In addition to presenting generalized, discrete representations of the differ- 
ential equations of motion using the staggered-grid approach, we also provide de- 
tailed formulations that describe the incorporation of moment-tensor sources, the 
implementation of a stable and accurate representation of a planar free-surface bound- 
ary for 3D models, and the derivation and implementation of an approximate tech- 
nique to model spatially variable anelastic attenuation within time-domain finite- 
difference computations. The comparison of results obtained using the staggered-grid 
technique with those obtained using a frequency-wavenumber algorithm shows ex- 
cellent agreement between the two methods for a variety of models. In addition, this 
article also introduces a memory optimization procedure that allows large-scale 3D 
finite-difference problems to be computed on a conventional, single-processor desk- 
top workstation. With this technique, model storage is accommodated using both 
external (hard-disk)and internal (core) memory. To reduce system overhead, a cas- 
caded time update procedure is utilized to maximize the number of computations 
performed between I/O operations. This formulation greatly expands the applicability 
of the 3D finite-difference technique by providing an efficient and practical algorithm 
for implementation on commonly available workstation platforms. 

Introduction 

Modem computational efficiency has advanced to a 
state where we can begin to calculate wave-field simulations 
for realistic 3D models at frequencies of interest to both 
seismologists and engineers. The most general of these nu- 
merical methods are grid-based techniques that track the 
wave field on a dense 3D grid of points, e.g., the finite- 
difference (FD), finite-element (FE), and pseudospectral (PS) 
methods. Various algorithms have been developed to imple- 
ment these techniques, and while there will always be debate 
as to which one is the "best" technique, each method has its 
merits and pitfalls. 

Our approach uses a staggered-grid finite-difference al- 
gorithm to model the first-order elastodynamic equations of 
motion expressed in terms of velocity and stress. In seismic 
applications, the velocity-stress formulation was first used 
by Madariaga (1976) to model fault-rupture dynamics. Vi- 
rieux (1984, 1986) and Levander (1988) have since extended 
the technique to model seismic wave propagation in 2D me- 
dia, and the formulation for 3D media is outlined by Randall 
(1989) and Yomogida and Etgen (1993). The advantages of 
the staggered-grid formulation are (1) source insertion is 
straightforward and can be expressed in terms of velocity 
(via body forces) or stress; (2) a stable and accurate repre- 

sentation for a planar free-surface boundary is easily imple- 
mented; (3) since the finite-difference operators are local, 
the entire model does not have to reside in core memory all 
at once; (4) it is easily extended to high-order spatial differ- 
ence operators; (5) the method can be interfaced with other 
modeling techniques by expressing the input wave field 
along a boundary of the finite-difference grid; and (6) the 
algorithm is easily implemented on scalar, vector, or parallel 
computers. 

In the following sections, we outline the numerical ap- 
proach beginning with the equations of motion and then de- 
scribe their discrete formulation using the staggered-grid 
approach. We do not provide a detailed analysis of the 
development of absorbing boundary conditions, stability of 
the numerical system, or issues regarding numerical grid dis- 
persion, as these topics are all adequately covered in the 
before-mentioned articles. We do, however, discuss in detail 
some new ideas related to incorporating earthquake (double- 
couple) sources, free-surface boundary implementation, and 
modeling spatially variable anelasticity (using Q). In addi- 
tion, we describe a memory optimization technique, which 
allows the computation of large-scale 3D finite-difference 
problems using only a single-processor desktop workstation. 

1091 



1092 R.W. Graves 

The key to this memory optimization technique is a cascaded 
time update algorithm that maximizes the number of com- 
putations performed between successive I/O operations. 
Along with the presentation and discussion of these new 
ideas, we also show a series of comparisons between results 
generated by the staggered-grid finite-difference method 
with those generated using a frequency-wavenumber inte- 
gration technique. These comparisons demonstrate the high 
degree of accuracy and utility of the staggered-grid tech- 
nique. 

Equations of  Motion 

The following sets of equations describe wave propa- 
gation within three-dimensional (3D), linear, isotropic elas- 
tic media. 

Equations of momentum conservation: 

POttUx = Ox'Cxx q- Oy'Cxy -[- OzZ'xz q - f x ,  

POttUy = 3x'Cxy + OyTyy + OzTy z -[- fy ,  

tgOnUz = Ox'Cxz + Oy'Cyz + Oz'Czz + fz" 

O) 

Stress-strain relations: 

r~x = (2 + 2/~)OxUz + 2(ayUy + OzUz), 

ryy = (,l + 2/OOyUy + 2GUx + OzUz), 

rzz = (2 + 2/l)Ozu z + 2(OxUx + OyUy), 

rxy =/4OyU~ + O~Uy), 

rxz = ~(Ozu~ + O~Uz), 

Ty z = ]l(Ozlgy -'~ Oyl~z). 

(2) 

In these equations, (u~, Uy, u z) are the displacement com- 
ponents; (r~, ryy, Zzz, %y, %z, ryz) are the stress components; 
(fx, fy, fz) are the body-force components; p is the density; 2 
and/t are Lam6 coefficients; and the symbols Ox, Oy, 0 z, and 
Ott are shorthand representations of the differential operators 
O[Ox, O/3y, O/Oz, and 32/0t 2. 

These equations can be formulated into a set of first- 
order differential equations by first differentiating equations 
(2) with respect to time and then substituting the velocity 
components (vx, Vy, Vz) for the time-differentiated displace- 
ments Ot(Ux, Uy, Uz). The  resulting sets of equations are given 
by 

Otv~ = b(O~Zxx + OyTxy q- Oz'Cxz -[-fx) ,  

OtVy = b(O~rxy + Oy72yy q- C3x'Cy z q - f y ) ,  

OtVz = b(Grxz + OyTy z "[- OZTZZ q- f z ) ,  

where b = 1/p is the buoyancy, and 

(3) 

O,rzz = (2 + 2tZ)OxVx + ;~(OyVy + OzVz), 

O,ryy = O, + 2tZ)OyVy + 2G V x  + OzVz), 

OtVzz = (2 + 2#)OzV z + 2(O~vx + OyVy), 

O,"(xy = ~(OyV x -Jr- OxVy), 

Otrxz = ¢t(OzV~ + Oxvz), 

OtTy z = ].l(OzVy -~ OyVz). 

(4) 

Finite-Difference Implementation 

The system of equations (3) and (4) is easily solved 
using a staggered-grid finite-difference technique (e.g., Vi- 
rieux, 1986; Levander, 1988; Randall, 1989). Details of this 
type of formulation can be found in the above articles, along 
with numerical accuracy and stability analyses. Figure 1 il- 
lustrates the layout of the wave-field variables and media 
parameters on the staggered-grid mesh. One of the attractive 
features of the staggered-grid approach is that the various 
difference operators are all naturally centered at the same 
point in space and time. Thus, the system is not only stag- 
gered on a spatial grid but also temporally, so that the ve- 
locities are updated independently from the stresses. This 
allows for a very efficient and concise implementation 
scheme. 

The discrete form of equations (3) and (4) is given by 

n + 1 / 2  . n - 1 / 2  
Vxi+ ll2,j,k = Vxi+ l/2,j,k q- [Atbx(Dxz~ 

q- DyTxy q- Dzrxz + f x ) ]  lin+ 1/Z,j,k 

Vy. + in n- 1/2 [At by(D~zxy i,j+ l/2,k = Vyi,j+ l/2,k "t- 

"-k OyT;yy + DzTy z "F f y ) ]  linj+l/2,k ( 5 )  

n + l / 2  n--l~2 [Atbz(OxTxz -t- DyTy z Vzi,j,k+l/2 = Vzi,j,k+ll2 q- 

+ DzZzz + fz)] [inj,k+l/2 

for the velocities, and 

n + l  = T n Txxi,j,k xxi.j.k + At[(2 + 21t)Dxvx 
D v )]l n+ 1/2 + 2(Dyvy + z z  /j,k 

T n + l  n yyij,k = ryyij,k + At[(2 + 2¢t)Dyvy 
D v )]l n + 1/2 + 2(Dxvx + z z  i,j,k 

n + l  = T n "gzzi,j,k zzi,j,k + At[(2 + 2p)DzV z 
\ l , n +  1/2 

"1- ~(DxV x -I- LIyVy)Jli,j, k 
(6) 

n + 1  n [~-y(Oy Txyi+ l/2,j+ ll2, k = "Cxyi+ ll2,j+ ll2, k "~- At  v z 
~ n +  1/2 

-I- L]xVy)]li+ l / 2 , j +  l/2,k 

n + l  n 
Txzi + ll2,j,k + 1/2 = Txzi + ll2.j,k + 112 "~- At[fi~(Dzvx 

\ l ~ n +  1/2 
-[- LIxVx)]l i + ll2,j,k + 1/2 
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Figure 1. Grid layout for staggered-grid 
formulation, a unit cell consists of the wave- 
field variables and media parameters that are 
defined at a specific node, as shown in the top 
portion of the figure. The model space is then 
made up of series of repeated unit cells that 
occupy a 3D volume of space. The indices (L 
j, k) represent values of the spatial coordinates 
(x, y, z), respectively, and the grid spacing h is 
defined as the length between the centers of 
two adjacent grid cells. 

n +  1 n - H  
7~yzi,j+ 1/2,k+ 1/2 : "Cyzi,j+ 1/2,k+ 1/2 -1- At[flyz(Dxvy 

~ , n +  1/2 + LIyVz) l l i , j+  1/2,k + 1/2, 

for the stresses. 
In the above equations, the subscripts refer to the spatial 

indices, and the superscripts refer to the time index. Thus, 
with a grid spacing of h and a time step of  At, the expression 

Vx n + 1/2 i+ 1/2,j,k (7) 

represents the x component of  velocity evaluated at the point 
x = [i + (1/2)]h, y = jh, z = kh, and at t ime t = [n + 
(1/2)]At (see Fig. 1). We have used a second-order approx- 
imation for the time derivatives in these expressions, and the 
symbols Dx, Dr, and D z represent the discrete forms of the 
spatial differential operators ax, Or, and O z. Second- and 
fourth-order expressions for these discrete operators are 
given in Appendix A. Here, we have also introduced the 
effective media parameters given by 

1 
bx = ~ [bi,j,k + bi+ 1,j,~] 

1 
by = ~ [bij,k + bij+l,k] 

1 
bz = 2 [bi,j,k q- bi,j,k+l] 

(8) 

for the buoyancy, and 

] -1 
i.lxy-H = (l[,ai,j, k -I- l /]gi+l,j ,  k q- 1]].li,j+m, k -]- l / a i + l , j + l , k )  

,Uxz = (l[,ai,j, k -.I- l[,Ui+l,j, k -t- l [ f l i j , k+ 1 -I- l [ f l i+ l , j , k+l  ) 

-o [4 ]_1 f lyz = ( l[ ,ai j ,k  + l / , a i j+ l , k  -t- 1],Ui,Lk+I -I- l [ f l i j + l . k + l )  

(9) 

for the rigidity. 
The use of  effective media parameters for the staggered- 

grid formulation follows from the work of  Randall et al. 
(1991), who applied this technique to systems with second- 
order spatial operators. For non-staggered-grid systems, sev- 
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eral investigators have employed effective media parameters 
in their calculations (e.g., Boore, 1972; Kummer et al., 1987; 
Moczo, 1989; Zahradnik et al., 1993). As shown by Zah- 
radnik et al. (1993), the effective media parameters provide 
a more accurate representation of the actual parameters in 
the region near media interfaces by appropriately satisfying 
the traction continuity condition across the interface. Our 
numerical experiments for the fourth-order staggered-grid 
system show that the use of effective media parameters 
yields very accurate results. Furthermore, we have found that 
media averaging is necessary to ensure numerical stability 
when an interface with a large media contrast (e.g., factor 
of 4 or 5) intersects the free surface. 

Two important points should be noted regarding the nu- 
merical implementation of equations (5) and (6). First, the 
differential operators only act on the wave-field variables, 
not on the media parameters, thus differencing of the media 
coefficients is not necessary in this scheme, and the com- 
plexity of the media has no impact on the form of the dif- 
ferential terms. Second, the time updates are computed such 
that the velocity field at time In + (1/2)]At is determined 
explicitly from equations (5) using the velocity field at time 
[n - (1/2)]At and the stress field (and, possibly, body 
forces) at time nat .  At time (n + 1)At, the stress field is 
then updated explicitly with equations (6) from the stress 
field at time n a t  and the previously updated velocity field at 
time [n + (1/2)]At. Thus, the time update scheme is very 
straightforward, and source implementation (stress, velocity, 
equivalent body force, etc.) is explicit and is accomplished 
by simply adding the appropriate source components to the 
wave field. A more detailed discussion of source specifica- 
tion is presented in a later section. 

M e m o r y  Optimizat ion Procedure 

Since the difference operators used in this formulation 
are local operators (meaning that the spatial derivatives are 
calculated using only a few neighboring grid points), then 
only a subset of the entire model space must reside in core 
memory at one time (Fig. 2). Not only does this ease the 
restriction on model size due to core memory constraints but, 
perhaps more importantly, the time-stepping algorithm can 
then be easily formulated so as to maximize the number of 
time updates that are performed on the model subset for each 
I/O operation. We refer to this procedure as the memory 
optimization algorithm, and its implementation is illustrated 
schematically in Figures 3a and 3b. 

In Figure 3a, the computation is initiated using a "roll- 
in" procedure to bring a subset of the model space into core 
memory. In this figure, the shaded boxes represent 2D planes 
of the model space taken at discrete locations along the y 
axis, which are stored in core memory. Each plane contains 
either the velocity or stress components of the wave field at 
a given time step for all x and z locations in that plane. 
Velocities and stresses are updated using equations (5) and 
(6), as shown schematically in the upper left panel of this 

external 
storage 

~X 

3D Mode l  Storage 

)re 
nory 

Figure 2. Schematic diagram illustrating the divi- 
sion of the mode space between external (disk) and 
internal (core) memory. Because the difference oper- 
ators are local, only a subset of the model space needs 
to reside in core memory at one time. In this scheme, 
individual slices of the model are pushed through core 
memory in a pipeline fashion as the computations 
proceed, eventually sweeping out the entire model 
space. Each slice of the model is composed of two xz 
planes (one for the velocity field and one for the stress 
field) centered at a given value of y. 

figure. For the fourth-order system, four spatially adjacent 
planes are needed for the update. In addition, the updated 
variable overwrites (in memory) the value at the previous 
time step, as indicated by the open boxes in this figure. 

To initiate the calculation, a number of velocity and 
stress planes are read into core memory, with the total num- 
ber of stress planes being two less than the total number of 
velocity planes (Fig. 3a, Step 1). Next, using equations (5), 
velocities are updated for all possible planes (YN-4 . . . . .  Y0), 
overwriting the existing values and using an appropriate 
boundary condition operator at Y0. The total number of 
planes that can be updated will be three less than the initial 
number of velocity planes read into memory (Fig. 3a, Step 
2). Now, using these newly updated velocity planes along 
with equations (6), the stress field can be updated in a similar 
manner. Again, the total number of updated planes is three 
less than the number available at the previous time step (Fig. 
3a, Step 3). Steps 2and  3 can be repeated until all possible 
updates have been computed for the current model subset 
(Fig. 3a, Step 4). It should be noted that although a number 
of time updates have been computed, no additional storage 
beyond the initial allocation is required. 

Once the initial model subset has been established by the 
roll-in procedure described above, the remaining portion of 
the model can be updated using the cascaded time update 
scheme illustrated in Figure 3b. First, a new set of initial ve- 
locity and stress planes are read in at the next step in the y 
direction (Fig. 3b, Step 1). Using these new planes, a whole 
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series of time updates can be computed for the existing model 
planes that currently reside in core (Fig. 3b, Step 2). When 
the end of the pipeline is reached, the last set of planes is 
written out to hard disk (Fig. 3b, Step 3). This same sequence 
of steps is repeated until all planes of the model have been 
processed. A "roll-out" procedure similar to the roll-in pro- 
cedure is then used at the end of the model. This entire process 
is then repeated to compute subsequent time updates. 

The number of time updates that can be performed be- 
fore having to read from hard disk is directly proportional 
to the number of planes stored in core memory. This is gov- 
erned by the relation 

NP = 4 × N T  + 2. (10) 

Here, NP is the number of planes stored in core memory, and 
NTis  the number of time updates that can be computed before 
the next I/O operation. Obviously, the more core memory 
that is available, the greater the number of time updates that 
can be done between I/O operations. In typical large-scale 
3D applications, 5 to 10 time updates can easily be computed 
for each I/O operation. This reduces I/O time to about 10 to 
20% of the total CPU time and allows the method to be im- 
plemented efficiently on a workstation platform. 

Absorbing Boundary  Condit ion 

In our formulation, we use the AI  absorbing boundary 
condition of Clayton and Engquist (1977), as applied to the 
velocity components of the wave field. This is basically a 
normal incidence, plane wave approximation for the out- 
going waves and is very easy to implement. We assume that 
P waves are partitioned on the velocity component perpen- 
dicular to a given model boundary and that S waves are 
partitioned on the velocity components oriented parallel to 
the model boundary. At the corners of the model lspace, P- 
and S-wave velocities are averaged, and this averaged wave 
speed is used in the application of the boundary condition 
for all three velocity components (i.e., no distinction is made 
between P and S waves at the model corners). 

Moment -Tensor  Source Description 

Representations of earthquake sources can be included 
in the staggered-grid system using either the stress compo- 
nents (e.g., Coutant et al., 1995; Olsen et al., 1995) or the 
velocity components (e.g., Yomogida and Etgen, 1993). 
Here, we present a generalized moment-tensor source for- 
mulation, which uses a distribution of body forces that are 
added to the individual components of velocity. Our ap- 
proach basically follows the method outlined by Frankel 
(1993), with appropriate modifications to incorporate the 
staggered-grid parameterization. 

The moment-tensor components can be represented as 
an equivalent distribution of body-force couples centered at 
the grid location x = ih, y = jh, z = kh. We will begin by 

first considering the moment-tensor contributions to the x 
component of the body forces, ft. These components are 
M~x(t), M,:y(t), and M~z(t). The M~(t) component represents 
a force couple having a moment arm of length h aligned in 
the x direction (see Fig. 4a). The strength of each force is 
M~x(t)/h, and normalizing by the volume of the grid cell, h 3, 
we obtain the equivalent body-force distribution, 

Mx~(t) 
f x i  + l/2,j,k - -  h 4 , 

-Mxx(t)  
f x i -  m,j,~ - h 4 , 

(11)  

for this component. Similarly, we can define equivalent 
body-force distributions for the M~y(O and Mxz(t) moment- 
tensor components. These are given by 

_ M ~ ( t )  

fxi-  1/24+ 1.k 4h 4 

fxi+ ln,j+ 1 , k  = M x y ( t )  
4h 4 

fx~_ 1~2,j- ~,~ = - M,~(t) 
4h 4 

f x~+ . 2 j _  ~,~ = - M ~ ( t )  
4h 4 

(12) 

for the Mxy(t) component, and 

M A t )  
f X i _ l / 2 , j , k +  1 - -  4h  4 

Mxz( t) 
fxi+ 1/2,j,k+ 1 - 4h 4 

- Mxz(t) 
f x i -  1/2.j,k- 1 - 4h 4 

-Mxz(t)  
f x i  + 1/2,j,k-- 1 - -  4h 4 

(13)  

for the Mxz(t) component. The additional factor of 4 in the 
normalization terms of these components arises because the 
length of the moment arms is 2h, and two adjacent couples 
must be averaged in order to center the source at the proper 
location. These force distributions are illustrated in Figures 
4b and 4c. The moment-tensor contributions to the y and z 
components of the body forces, fy and fz, can be derived 
in a similar fashion. These expressions are given in Appen- 
dix B. 

Using equations (1l) through (13) and (B1), we have a 
complete description of the body-force distribution required 
to represent the moment-tensor components. These expres- 
sions can be used to specify the source radiation for a wide 
range of source mechanisms (e.g., explosion, shear dislo- 
cation, etc.). In our applications, we are primarily interested 
in the study of earthquake sources, which can be described 
as shear dislocations along a planar fault. Relations between 
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a) 
Roll-in Model Planes 

V e l o c i t y  P l a n e  U p d a t e  
initial updated 

~ n + l ] 2 ~  

Stres s  P l a n e  U p d a t e  
initial updated 

[ ]  velocity plane stored in core memory 
[ ]  stress plane stored in core memory 
[ ]  overwritten model plane (in core) 

v,.~n : velocity at it=n-l/2 
x, : stress at it=n 

vo÷~/2: velocity at it=n+l/2 
x,~, : stress at it=n+l 

t 

T Step 1: Read  Ini t ial  M o d e l  Subset  
for  Planes  (0 ..... N - I )  

yo yN.~ 
) 

Y 

t 

Step 3: Compute  Stress Upda te  
for  Planes  (0 ..... N-6)  

Vn+z/2 ] ~ - - I  I I 
x, I I I I I I I I I I I I I I ~ 1 ~  
v , . , J  I I I I I I I I I I I I I I ~ > 

Yo Y~.I 
Y 

Step 2: Compute  Veloc i ty  Update  
for Planes  (0 ..... N-4)  

Vn+lZ [ 
v._,.ll I I [ I I I I I I I I I I I / 

Yo YN-I Yo 
Y 

YN.1 

F igure  3. (a) Schematic diagram demonstrating the "roll-in" procedure to bring a 
subset of the model into core memory. Initially, a set of velocity and stress planes are 
read into core memory for Y0 . . . . .  YN- 1 (step 1). Then, the velocities are updated for 
planes Yo . . . .  YN 4 (step 2). Using these updated values, the stress planes for Y0 . . . .  
Y~v-6 can then be updated (step 3). Steps 2 and 3 can be repeated until the remaining 
portion of the model subset has been updated (step 4). The model is now ready to begin 
the cascaded sequence of time updates illustrated in (b). (b) Schematic diagram dem- 
onstrating the optimization of the number of time update computations performed for 
each I/O operation from disk. For each new set of model planes read into core (step 
1), a series of time updates are performed (or cascaded) through the existing model 
planes that currently reside in core (step 2). Finally, the last set of model planes in the 
pipeline is written back to disk (step 3). Typically, utilizing this type of optimization 
yield 5 to 10 time updates per I/O operation, significantly reducing system overhead. 

Y 
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b~ 
Cascaded Time Update Scheme 

• velocity plane stored in core memory 

[ ]  stress plane stored in core memory 

[ ]  overwritten model plane (in core) 

[ ]  model plane read into core from external storage device 

[ ]  model plane written to external storage device 

(a) 

Moment Tensor Components 
in the x-direction 
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(b) Mxy component 
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(c) Mxz c o m p o n e n t  
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f x -  4h 4 
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Figure 3. continued 

Y 

the fault parameters strike, dip, rake, and moment,  and the 
Cartesian components of  the moment  tensor are given by 
Aki  and Richards (1980). 

To demonstrate the effectiveness of  this source formu- 
lation, we have performed calculations to model  the seismic 
response for three fundamental fault orientations. These fault 
orientations are listed in Table 1. Fol lowing the expressions 
of  Herrmann and Wang (1985), l inear combinations of  these 

Figure 4. Representation of Cartesian moment- 
tensor components acting in the x direction using 
equivalent body-force components. For the f~ com- 
ponent, the forces are applied at the same location as 
the v x component of the wave field. The symbols rep- 
resenting the wave-field variables in the above dia- 
grams are the same as those defined in Figure 1. The 
strength of the body force applied at each point is 
given by the expression to the right of each diagram, 
and the force direction is indicated by the vectors 
shown in each of the diagrams. Similar representa- 
tions can be made for thefy andfz force components. 
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Table 1 
Fundamental Fault Orientations 

Fault Parameters Observation Azimuth 

Fault Name Strike Dip Rake VerlicaI Radia l  Tangential 

DD 0 ° 45 ° 90 ° 45 ° 45 ° no  response  

DS 90 ° 90 ° 90 ° 0 ° 0 ° 90 ° 

SS 0 ° 90 ° 0 ° 45 ° 45 ° 0 ° 

fundamental responses can be used to obtain the response 
for a fault of any arbitrary orientation. 

For these calculations, we have used a half-space model 
(Vp = 4.0 km/sec, v~ = 2.3 km/sec, p = 1.8 gm/cm 3) with 
a source depth of 2.5 km and an observation point on the 
surface at a horizontal range of 10 kin. The source time 
function is a triangle with a width of 1 sec. A grid spacing 
of 0.25 km and a time step of 0.025 sec were used in the FD 
computations. The time histories computed with the FD tech- 
nique are compared with those obtained using a frequency- 
wavenumber (FK) integration technique (e.g., Wang and 
Herrmann, 1980; Saikia, 1994) in Figure 5. The FK tech- 
nique has been widely used in applications of ground-motion 
synthesis and is generally accepted as an extremely robust 
and accurate technique. It is clear from this comparison that 
the agreement between the two sets of results is very good, 
both in terms of amplitude and waveform, indicating that the 
FD source formulation accurately represents the moment- 
tensor description of these fundamental faults. 

Since the FD formulation accurately models the funda- 
mental fault responses, it is inferred that any fault orientation 
can be modeled provided the appropriate moment-tensor 
components are used in expressions (11) through (13) and 
(B 1). In addition, this source formulation can easily be used 
to model the response of heterogeneous rupture along a finite 
fault by distributing the moment-tensor point sources along 
an interface within the model chosen to represent the fault 
surface. 

Free-Surface Boundary  

Free-surface boundary conditions often require careful 
consideration in finite-difference schemes because of con- 
cerns related to numerical stability and accuracy of the com- 
puted response (e.g., Alterman and Rotenberg, 1969; Ilan et 
aL, 1975; Baytiss et aL, 1986; Vidale and Clayton, 1986; 
Kosloff et al., 1990; Zahradnik et al., 1993). Here, we de- 
scribe techniques for implementing a planar free-surface 
boundary for 3D problems utilizing fourth-order (or higher) 
spatial difference operators with the staggered-grid scheme. 

Zero-Stress Formulation 

To represent a planar free-surface boundary in the stag- 
gered-grid scheme, an accurate and numerically stable for- 
mulation is easily implemented by explicitly satisfying the 
zero-stress condition at the free surface (e.g., Levander, 
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Figure 5. Comparison of seismograms calculated 
with the finite-difference (solid line) and the fre- 
quency-wavenumber (dashed line) techniques for the 
three fundamental fault orientations. The agreement 
between the results from the two techniques is very 
good, indicating the accuracy of the moment-tensor 
source formulation used in the finite-difference al- 
gorithm. 

1988). Choosing the z axis as the vertical direction (positive 
downward) and setting the free surface at z = 0, we must 
satisfy the following expression: 

"Czz = Txz = "Cy z = 01z= O. (14) 
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Upon discretizing the model, particular values of  the 
stress and velocity components need to be specified at and 
above the free-surface boundary in order to solve the interior 
system given by equations (5) and (6). Setting the free-sur- 
face boundary at i z  = k (see Fig. 6), the values of  the stress 
field at and above the free surface are obtained using the 
property of  antisymmetry; i.e., 

"gzz: "gzz l i z - k  : 0 ,  

"gxz: "Cxzliz = k - 1 / 2  ~ - -  "Cxzliz = k + 1 / 2 ,  

"Cyx: "Cyzliz = k -  t / 2  = - -  "Cyzliz=k + 112, 

zzzliz =~-  1 = - zzzliz-k + 1; 
zzzliz= ~_ 3/2 = _ rxzliz = k + 3/2; 
zyzliz= k -  3/2 = - ryzliz- k+ 3/2. 

(15) 

The variables Zxx, Zyy, and Zxy are not needed above the 
boundary. Using these relations along with equations (2), we 
can derive the following difference equations for the velocity 
components at the free surface: 

- 2  
Dzvz  - (2 + 2¢t) [Dxvz  + Dyvy] liz:k, 

D z v x  : - [DzVx + Dxvz]  [ i z = k  + l l2  - -  OxVzliz=k-1/2, 
Ozvy  = - [Ozvy  + Oyvz]  liz=k + 1/2 -- O y V z l i z = k -  1/2. 

(16) 

Given the interior values of  vx, Vy, a n d  v z at and below the 
free surface (from equations 5), equations (16) can be solved 
using second-order difference operators (see Appendix A) 
to obtain the velocity components in the grid row just above 
the free surface. 

To assess the accuracy of  the zero-stress formulation in 
representing a planar free-surface boundary, we compare 
synthetic seismograms calculated using the staggered-grid 
FD technique with those obtained using the FK technique 
discussed earlier. Two models were analyzed: (1) a half- 
space model (v e = 4.0 km/sec, vs = 2.3 km/sec, p = 1.8 
gm/cm 3) with an explosion source at a depth of  0.5 km and 
an observation point on the surface at a horizontal range of  
20 km, and (2) a plane-layered model (M1), which is listed 
in Table 2 with a DD source (see Table 1) located at a depth 
of  2.6 km and an observation point on the surface at a dis- 
tance of  10 km. The explosion and DD source mechanisms 
are particularly efficient in the excitation of  Rayleigh waves 
at the free surface and thus provide a stringent test of  the 
free-surface boundary formulation. In the FD calculations, 
model 1 has a time step of  0.025 sec and grid spacing of  
0.25 kin, and model 2 has a time step of  0.02 sec and grid 
spacing of  0.2 km. In order to focus on the free-surface re- 
sponse, we have not included the effects of  anelastic atten- 
uation in these calculations (i.e., Qp = Q~ = ~). For both 
models, a 1-sec triangle was used as the source time func- 
tion, and the responses have been low-pass filtered at 1 Hz. 
At the upper frequency limit of  1 Hz, model 1 has over nine 
grid points per shear wavelength, and model 2 has five grid 
points per shear wavelength in the lowest-velocity region of  
the model. 

Figure 7 displays the seismogram comparison for the 
two models. For the half-space model with the explosion 
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Figure 6. Layout of the field variables in an xz  
plane of the model space using the staggered-grid for- 
mulation. The media parameters 2,/t, and p are de- 
fined at the same locations as the normal stress com- 
ponents (open circles). For models with variable 
media, the boundaries between regions of different 
media are defined by the thin solid lines. The effective 
values of density and rigidity on these boundaries are 
determined using equations (8) and (9). The location 
of the zero-stress free-surface boundary is shown by 
the heavy solid line and is coincident with the location 
of the normal stress nodes. 

Table 2 
Velocity Model M1 

~ ( k m / s ~ )  ~ ( k m / s e c )  p ( ~ m  3)  ~ ( ~ )  

2.0 1.0 1.4 0.7 
3.0 1.6 1.5 1.2 
4.0 2.3 1.8 - -  

source, two distinct arrivals are apparent; the direct P wave 
at about 5 sec, and a very strong Rayleigh wave at about 9 
sec. Clearly, the overall agreement between the responses 
obtained from the two computational techniques is very 
good for this model. In fact, the only noticeable difference 
is a slight underprediction in the amplitude of  the Rayleigh 
wave on the radial component as computed by the FD 
method. 

The lower panel of  Figure 7 shows the comparison of 
results for the plane-layer model with DD source mechanism. 
In this case, the source radiates both P and S waves, and due 
to the layered velocity structure, a combination of  direct, 
reflected, and converted phases, in addition to the surface 
waves, contributes to the computed ground-motion response. 
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However, despite the increased complexity of the model, the 
two techniques produce results that are in excellent agree- 
ment with one another. 

In the above analysis, we have only considered models 
having a horizontal (planar) free-surface boundary. For this 
case, the zero-stress formulation provides a highly accurate, 
stable, and efficient method to model the response at the free 
surface. For the case of a dipping or irregular free-surface 
boundary, the zero-stress formulation becomes more diffi- 
cult to formulate because the boundary is no longer naturally 
aligned with the layout of the FD grid. Techniques that lo- 
cally rotate the grid coordinates (e.g., Jih et aL, 1988) or that 
deform the grid using a coordinate mapping (e.g., Tessmer 
et al., 1992; Tessmer and Kosloff, 1994) have been suc- 
cessfully applied with the zero-stress formulation. However, 
these approaches can require a significant amount of nu- 
merical bookkeeping and may not be computationally prac- 
tical for large 3D models. 

Vacuum Formulation 

An alternative method to model surface topography is 
to let vp, vs, p --+ 0 in the region above the free surface. This 
is the so-called vacuum formulation (e.g., Randall, 1989; 
Zahradnik et aI., 1993). This approach is attractive because 
it can be implemented with the same difference equations 
used in the interior of the model, and thus, the effects of 
surface topography are modeled in the same manner as in- 
ternal media interfaces. However, numerical experiments 
show that this formulation is only stable for staggered-grid 
systems using second-order spatial difference operators, and 
unfortunately, for most 3D applications, second-order op- 
erators are inefficient because of the increased grid dimen- 
sions required to reduce numerical dispersion. Using fourth- 
order (or higher) spatial difference operators allows the use 
of a larger grid spacing, but these operators become unstable 
for regions where p -+ 0. 

In an attempt to stabilize the vacuum formulation for 
fourth-order systems, we have tried several variations of the 
above parameterization. In the one approach, which we refer 
to as the VF-O4 scheme, we allow v e, v, --+ 0, while holding 
the density constant (or reducing only marginally) in the 
region above the free surface. In another approach, which 
we refer to as the VF-O24 scheme, we allow Vp, v,, p -+ 0 

above the free surface, but we apply second-order spatial 
difference operators locally at the free-surface boundary. A 
third approach, which we are currently testing, involves the 
use of more sophisticated formulations for the averaging of 
media parameters than those given by equations (8) and (9). 
Preliminary results indicate that stability can be achieved 
with this approach, however, the accuracy of the response is 
significantly degraded. Since this approach is still being in- 
vestigated, we defer presentation of the details of this for- 
mulation to a later time. 

Both the VF-O4 and VF-O24 schemes appear to yield 
stable calculations, yet they also suffer from numerical in- 
accuracies that limit their range of applicability. This is il- 
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Figure 7. Comparison of seismograms calculated 
with the frequency-wavenumber technique (dashed 
line) and the finite-difference technique using the 
zero-stress free-surface formulation (solid line). The 
top panel shows the results for a half-space model, 
and the bottom panel shows the results for a plane- 
layered model• For both models, very good agreement 
is obtained between the results generated with each 
technique. 

lustrated in Figure 8, which compares calculations obtained 
with these formulations against FK results computed for 
models similar to those discussed earlier in Figure 7. Be- 
cause the free surface in the vacuum formulation lies along 
a media boundary that is one-half grid length (h/2) from the 
depth level of the zero-stress boundary (see Fig. 6), we have 
increased the source depth by h/2 for consistency in these 
comparisons. In addition, for the plane-layer structure, here 
we use a slight variation of model M1 (Table 2), which has 
a top layer with a thickness of 0.8 km instead of 0.7 kin. We 
refer to this as model M2. 

The VF-O4 scheme exhibits the most serious shortcom- 
ings, showing significant grid dispersion for Rayleigh-wave 
propagation along the free surface (Fig. 8). This scheme fails 
because the use of a nonzero value for the density above the 
free-surface boundary does not match the appropriate reflec- 
tion coefficient for the vacuum formulation at the free sur- 
face (Zahradnik et al., 1993). This allows energy propagat- 
ing along the free surface to leak into the region above the 
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Figure 8. Comparison of seismograms calculated 
with the frequency-wavelmmber technique (long- 
dashed line) and the finite-difference technique using 
the modified vacuum formulations for the free-surface 
boundary discussed in the text (VF-O4 and VF-O24). 
the VF-O4 formulation (short-dashed line) shows sig- 
nificant grid dispersion in the propagation of Rayleigh 
waves along the free surface. The VF-O24 formula- 
tion (solid line) does not appear to suffer any prob- 
lems related to grid dispersion, but this approach does 
show some mismatch in the amplitude response of 
surface-reflected phases. 

boundary, which has essentially zero-wave velocity. Since 
the energy is allowed to leak into this region, the Rayleigh 
wave senses the low velocities above the boundary and ex- 
hibits the characteristics of numerical grid dispersion. This 
phenomena is similar to the "ringing" described by Kosloff 
et aL (1990) when using a zero-velocity zone to model the 
free surface with the pseudospectral technique. 

The VF-O24 scheme, on the other hand, does not appear 
to suffer any difficulties related to grid dispersion at the free- 
surface boundary. However, the amplitudes of the surface 
waves and surface-reflected phases generated by this for- 
mulation are not as accurate as those obtained by the zero- 
stress formulation shown in Figure 7. This probably results 
from a slight mismatch in the reflection coefficient obtained 
at the free surface with the VF-O24 scheme due to the tran- 
sition from fourth-order to second-order difference operators 
near the free-surface boundary. 

Of the two approaches considered here (i.e., the VF-O4 
and VF-O24 schemes), the VF-O4 scheme suffers noticeably 
from the effects of numerical grid dispersion for surface- 
wave propagation along the free-surface boundary, and 
therefore, the VF-O24 scheme currently appears to be the 
better approach for modeling the free-surface boundary us- 
ing the vacuum formulation. However, since we have not 
analyzed the performance of the VF-O24 scheme for the 
case of a nonplanar free-surface boundary, the stability and 
accuracy of this approach to model surface topography still 
need to be investigated. 

Model ing Anelastic Attenuation 

Incorporating viscoelasticity within time-stepping 
wave-field simulations is difficult because a straightforward 
application of such models in the time domain requires a 
convolutional relation between stress and strain. Algorithms 
that replace the convolutional operators with a system of 
relaxation functions circumvent this problem, but at a sub- 
stantial increase in storage and computation time (e.g., Day 
and Minster, 1984; Emmerich and Korn, 1987; Carcione et 

aL, 1988). Here, we describe an approximate technique for 
modeling spatially varying viscoelastic media within finite- 
difference calculations using a simple time domain attenu- 
ation operator. The implementation of this operator is not 
restricted to staggered-grid formulations and can be gener- 
ally applied to any discrete-grid time domain technique. In 
addition, although we follow a different derivation approach, 
the attenuation operator we present is similar in form to that 
originally described by Zahradnik et aL (1990a, 1990b) for 
the special case of SH waves with spatially constant atten- 
uation. 

In the frequency domain, anelastic attenuation operators 
are well understood and easy to implement using the param- 
eter Q, which is the quality factor of the medium (Aki and 
Richards, 1980, p. 168). In the limit Q --~ ~, the medium is 
purely elastic; for finite values of Q, the medium behaves in 
a viscoelastic manner. Assuming Q is independent of fre- 
quency, anelasticity can be modeled by allowing the elastic 
wave speed Ce to take the form 

c e ~ c l  1 + - Q l n  - , (17) 

where Cl is the body-wave phase velocity at a reference fre- 
quency of 1 Hz (Aid and Richards, 1980, p. 182). If we 
consider a plane wave traveling in a homogeneous medium, 
this will give a propagation term of the form 

P = exp[ico(r/c w - t)] (18) 

and an attenuation term of the form 
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- -  f o r  A 

which is correct to first order in Q. Here, r is the distance of 
propagation, and Cw, the frequency-dependent phase veloc- 
ity, is given by 

[ 1 (o)] 
Cw = c~ 1 + n---Qln ~ (20) 

where the frequency dispersion is necessary to ensure cau- 
sality. 

For broadband analyses, the correct form of the fre- 
quency dependence in equations (19) and (20) is required to 
produce accurate results. However, for limited bandwidth 
analyses, these equations can be approximated by using an 
appropriate reference frequency. This simplifies the expres- 
sions by removing the explicit dependence on frequency. In 
addition, since the variations in phase velocity are typically 
less than 1 to 2% for the period range 1 to 20 sec, the ref- 
erence value Cl can be used as a good approximation to Cw 
in this bandwidth. 

For the attenuation term, choosing a reference frequency 
of co = 2nf0 gives us 

A exp[ ]  21, 

where we have set t = r/c~ as the travel time. Equation (21) 
implies that Q is no longer independent of frequency, but 
has the linear form 

f (22) 
Q = Q0~o, 

where Q0 is the frequency-independent quality factor. When 
f is near the reference frequency f0, the approximation to 
constant Q works very well. A good rule of thumb is to 
choose the reference frequency f0 to be near the peak fre- 
quency of the source and to specify a simulation bandwidth 
that is centered around this value. Relative to the constant 
Q model, energy for frequencies greater than f0 will be un- 
derattenuated, and energy for frequencies less than f0 will be 
overattenuated. 

In the preceding analysis, we have only considered one 
wave speed (Cl) and one value of Q. In theory, we should 
distinguish between P and S waves and apply the appropriate 
attenuation operator (Qp or Qs) to the particular wave field. 
In practice, this is difficult because the finite-difference cal- 
culation does not explicitly separate P and S energy. Cal- 
culating the divergence and curl of the wave field at each 
time step to determine the P and S energy partitions is pos- 
sible but can be cumbersome and time-consuming. In light 
of the approximations that we have employed in deriving the 
attenuation term (equation 21) and since earthquake motions 

are typically dominated by shear-wave (or surface-wave) en- 
ergy, it is probably adequate to use a Q function that is 
appropriate for shear waves. This means that, in general, 
P waves will be overattenuated, since Qp is usually larger 
than Qs. 

Implementation of the attenuation term given by equa- 
tion (21) within the finite-difference calculations is a trivial 
matter. Using sequential applications of equations (5) and 
(6), the velocity and stress fields are propagated from one 
time step to the next. Attenuation is accommodated at each 
time step by multiplying the updated velocity field deter- 
mined from equations (5) and the updated stress field deter- 
mined from equations (6) with the attenuation function given 
by 

[ -nfoAt ] 
a(x, y, z) = exp LQ-~x, Y, z)J' (23) 

where Qs(x, y, z) is the media-dependent (spatially variable) 
Q function for shear waves. The reason that the attenuation 
function must be applied to both the updated velocity field 
and the updated stress field is because both fields are prop- 
agated during each time update. 

In a strict sense, the attenuation function given by equa- 
tion (23) is only valid for plane waves propagating in a ho- 
mogeneous medium. However, in allowing Q to be spatially 
variable, we have relaxed this restriction by assuming that 
the media is homogeneous in the immediate vicinity of each 
grid point. Within locally homogeneous regions of large- 
scale heterogeneous media, this assumption is clearly valid. 
In regions near media interfaces where Q changes, this as- 
sumption can also be justified because the numerical stability 
condition (equation A6) requires At to be sufficiently small 
so that the wave energy can only propagate a fraction of a 
grid step at each time update. Therefore, the wave field trav- 
els only a short distance relative to the size of the grid spac- 
ing at each time update, and it takes several time updates (at  
a minimum) for wave energy to travel from one grid point 
to the next. Since the transmission of energy across an in- 
terface located between adjacent grid points represents the 
integrated effect of a number of time updates, then for each 
individual time step, the wave field is most sensitive to the 
(locally homogeneous) attenuation function defined at each 
specific grid point. 

In order to test the accuracy of the attenuation operator 
used in the FD technique, we compare FD simulation results 
with those obtained by the FK technique for three cases: (1) 
an infinite Q model, (2) a spatially variable Q model, and 
(3) a spatially constant Q model. For these calculations, we 
use the plane-layered velocity structure (M1) listed in Table 
2 with an SS source at a depth of 1.6 km and an observation 
point on the surface at a horizontal range of 10 km. For the 
spatially variable Q model, the top layer has Qp = 20 and 
Qs -- 10, with Q = ~ for all other layers. The spatially 
constant Q model is designed as an approximation for the 
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spatially variable Q model, and in this case, Q is set to 10 
for all layers in the model. For this example, we have chosen 
rather low Q values in order to highlight the effects of ane- 
lasticity on the various phases. The source time function is 
a l-sec triangle, and the results have been low-pass filtered 

5.00 
at 1 Hz. A reference frequency of 0.5 Hz (T = 2 sec) was 
used for the Q operator in the FD calculation. Figure 9 com- 0.0 
pares the simulated time histories. 

Many aspects of source and wave propagation phenom- ~ 5.00 
ena are illustrated in this simple example, including the ef- ~ o.o 
fects of source radiation pattern, free surface interactions, 
conversions between P and S energy, reflection and trans- 5.00 
mission at media interfaces, and surface-wave development. 0.o - 
In addition, by comparing both spatially constant and spa- 
tially variable Q formulations, we can examine the validity 

0.0 
of using the media-dependent attenuation operator in the FD 
calculation. 

5.00 I 

Overall, the seismograms in Figure 9 show very good ~ i i  I 
agreement between the FD and FK results for both the infinite 
Q and the two finite Q models. Due to the use of a relatively 
low Q value, the results for the spatially constant Q model ~ 5 
show a significant reduction in amplitude relative to the re- ~ 
suits of the infinite Q model. Yet even with a large amount "~ 

5.00 - of attenuation, the FD formulation matches the FK result very ;- 
well. In the spatially variable Q model, the amount of atten- 0.0 
uation experienced by a given phase depends on its partic- L ular propagation path. For example, surface waves are atten- 
uated much more than body waves because they are trapped 
in the upper (low Q) layers of the model. The favorable 
comparison demonstrated in Figure 9 for the spatial variable 15.oo 
Q model indicates that these effects are modeled very nicely o.o 
using the media-dependent Q operator in the FD calculation. 
This result supports the validity of using the spatially vail- ~ 15.0o 
able form of the attenuation operator in FD calculations and ~ o.o 
demonstrates the effectiveness of this formulation when the 
attenuation parameters are media dependent. 15.00 

As mentioned earlier, the attenuation model used in the 
FD calculations will underattenuate energy at frequencies 0.0~_ 
higher than the reference frequency f0 and will overattenuate P 
energy at frequencies less thanfo. Since the triangular source o.0 
pulse is peaked around a 1-sec period and the reference fre- 
quency for the attenuation term in the FD calculation was 
chosen at 0.5 Hz (T = 2 sec), the agreement for the body- 
wave phases between the two techniques is excellent. At 
longer periods, the FD results show somewhat more damping 
than the FK results, as indicated by the slight over-attenua- 
tion of surface waves in the FD calculation compared to the 
FK seismograms. However, since the absolute energy levels 
in the longer-period bandwidth is relatively small, the over- 
all effect of this mismatch is not very significant. 

Discussion and Conclusions 

The flexibility and accuracy of the staggered-grid finite- 
difference algorithm make this technique a powerful tool in 
the analysis of wave propagation problems. This article out- 
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Figure 9. Comparison of seismograms calculated 
with the finite-difference (solid line) and frequency- 
wavenumber (dashed line) techniques for models with 
infinite, spatially variable, and spatially constant val- 
ues of Q. For each component, the top pair of traces 
shows the infinite Q model results (labeled Infinite 
Q), the middle pair of traces shows the spatially var- 
iable Q model results (labeled Variable Q), and the 
bottom pair of traces shows the spatial constant Q 
model results (labeled Constant Q). In all cases, the 
agreement between the results from the two tech- 
niques is very good, even when rather low values of 
Q are used. 
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lines the basic formulation of a 3D elastic wave-field sim- 
ulation algorithm based on the staggered-grid finite-differ- 
ence approach. In order to keep the scope of this presentation 
at a general level, we have omitted a detailed discussion of 
issues related to the development of higher-order absorbing 
boundary conditions, stability analysis of the discrete sys- 
tem, and numerical grid dispersion. The articles by Virieux 
(1986), Levander (1988), and Randall (1989) provide more 
complete analyses of these issues. 

In addition to presenting a general outline of the stag- 
gered-grid approach for 3D elastic problems, this article also 
discusses issues related to the incorporation of realistic rep- 
resentations of seismic sources and geologic media within 
the finite-difference calculations. Specifically, the issues ad- 
dressed here are (1) the implementation of a moment-tensor 
source formulation for the staggered-grid system, (2) mod- 
eling a planar free-surface boundary response in a stable and 
appropriate manner, and (3) the development of an approx- 
imate technique for modeling spatially varying viscoelastic 
media with time domain attenuation operators. The exam- 
ples and comparisons shown in this article demonstrate that 
the staggered-grid formulation provides a highly accurate 
and efficient method for the simulation of elastic wave prop- 
agation in 3D media. Furthermore, although not specifically 
addressed here, one of the primary advantages of the stag- 
gered-grid system is its ability to model complicated, het- 
erogeneous media in a straightforward and stable manner 
(e.g., Levander, 1988; Randall e t  al., 1991; Yomogida and 
Etgen, 1993; Olsen e t  aL,  1995). 

While the finite-difference simulation of 3D elastic 
wave fields in large-scale geologic models can be compu- 
tationally demanding, it does not represent an unreachable 
goal. By utilizing the memory optimization procedure de- 
scribed in this article, large-scale 3D finite-difference sim- 
ulations can be computed in a routine manner using only a 
single-processor desktop workstation. This fact is illustrated 
by the data in Table 3, which summarizes the model param- 
eters and CPU run times for recent 3D elastic finite-differ- 
ence simulations of the 1987 Whittier Narrows earthquake 
(Graves, 1996b) and the 1995 Kobe, Japan, earthquake 
(Graves, 1996a). These simulations were run on a worksta- 
tion platform that consists of a Sun Sparcstation with a single 
125-MHz processor, 192 Mbytes of core memory, and a 2- 
Gbyte hard disk. 

To date, the simulation of the 1995 Kobe earthquake is 
the largest computation that we have conducted using the 
workstation approach. The model consists of 1.44 × 107 
grid points and required 104 sec of CPU to perform each 
time update, for a total of 175 CPU hours to produce 90 sec 
(6000 time steps) of simulated motions. To put these num- 
bers into perspective, we compare our run time parameters 
for the Kobe simulation with those reported by Olsen e t  al. 

(1995) for their 3D finite-difference simulation of a hypo- 
thetical event on the San Andreas fault in Southern Califor- 
nia. The Olsen e t  al. model is slightly larger than the Kobe 

Table 3 
Model Parameters and CPU Times for 3D Finite-Difference 

Workstation Simulations 

Whittier Narrows Kobe 

Model dimensions 250 × 250 × 90 400 × 300 × 120 
(nx X ny X nz) 

Total time steps 3000 6000 
Grid spacing (kin) 0.2 0.2 
Time step (sec) 0.01 0.015 
Minimum velocity (km/sec) 1.0 0.55 
Maximum frequency 1.0 0.5 

resolution (Hz)* 
Model size (total grid points) 5.625 )< 106 1.44 )< 107 
CPU per time step (sec) 40 104 
Total CPU (hours) 33 175 

*The maximum frequency resolution is the highest frequency that can 
be modeled with a sampling of at least 5 grid points per wavelength in the 
lowest-velocity region of the model. 

model (2.35 × 107 versus 1.44 × 107 grid points) and re- 
quired a computation time of 17 sec per time update using 
a supercomputer with 512 parallel processors. Normalizing 
by the difference in model size between these two simula- 
tions and the number of processors used in each calculation, 
the workstation-based approach described here is effectively 
30 times more efficient per processor than the supercomputer 
approach. Obviously, due to the large number of processors, 
the supercomputer simulation requires less total computation 
time than the workstation simulation (about a factor of 10). 
However, even with the increased run time, the workstation 
approach is far more practical because the computational 
hardware is relatively inexpensive (compared to a supercom- 
puter), and these platforms are already widely available. 

Utilizing the workstation simulation technique de- 
scribed in this article, we have an efficient and practical re- 
search tool that can be used to compute the expected nature 
of long-period ground motions for earthquakes occurring in 
areas containing complex geology. This 3D simulation tech- 
nique has been successfully applied to the Marina District 
of San Francisco (Graves, 1993), the Portland and Puget 
Sound regions of the U.S. Pacific Northwest (Graves, 1994a 
and 1994b), the Los Angeles region of southern California 
(Graves, 1995, 1996b), and the Osaka region in Japan 
(Graves, 1996a). The results of these studies provide quan- 
titative estimates of the effects of 3D geology on long-period 
strong ground motions generated during large earthquakes. 
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Appendix A 

Staggered-Grid Finite-Difference Operators 

Here, we present second-order and fourth-order spatial 
difference operators for use in equations (5) and (6). Co- 
efficients for these and higher-order operators are easily 
determined using the technique described by Yomogida and 
Etgen (1993). 

The spatial derivatives in equations (5) and (6) are given 
by expressions of the form 

0 
Ox vx Dxv~lij,k, (A1) 

w h e r e  Dx rep resen t s  the  d iscre te  f o r m  of  the  d i f fe ren t ia l  op-  

e ra to r  O/Ox ac t ing  on  the  va r i ab le  v x, and  eva lua ted  at  the  

po in t  x = iAx, y = j A y ,  z = kAz.  W i t h  a u n i f o r m  gr id  
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spacing of  h (i.e., Ax = Ay = Az = h), the second-order 
O(h 2) form of this operator is 

1 
Dxvxli,j,l~ = -~ [Vxi+ v2j,~ --  Vxl-m,j,k] (A2)  

(Virieux, 1986), and the fourth-order O(h 4) form is 

1 
Dxvxli,j,k = ~ {Co [vx~+,,2,~,~ - v~,_l,~j,A 

- -  Cl[1.;xi+312,j,k - -  Yxi_3/e.j.k]} , (A3)  

where Co = 9/8 and cl = 1/24 (Levander, 1988). The sta- 
bility criterion for the 3D system is given by 

h E 01 Vmax 5 Cm ' 
(A4)  

where Vma x is the maximum wave speed and cm are the co- 
efficients of  the difference operator. For  the second-order 
system, N = 0 and c o = 1, and we obtain the relation 

h 
At < - -  (A5)  

Vma x ~/3"  

And similarly, for the fourth-order system, we obtain 

h 
At < 0.495 - - .  (A6)  

12max 

In addition, the second-order system requires a minimum 
sampling of  10 grid points/wavelength (Virieux, 1986), and 
the fourth-order system requires a minimum sampling of 5 
grid points/wavelength (Levander, 1988). 

A p p e n d i x  B 

fy and fz Body-Force Components 
of the Moment-Tensor Source 

Expressions for the distributions of  body-force com- 
ponents f y  and fz due to a moment-tensor source can be de- 

rived in a similar manner as that discussed in the text for the 
f x  component. For  a source centered at the grid location x = 
ih,  y = j h ,  z = kh ,  these expressions are 

Msy(t)  _ M A t )  
fyl,j+ ,/2,k = h 4 fzid,~+ 1/2 h 4 

- M y y ( t )  _ - M A t )  

fyij-  1/2,k = h 4 fzid,~- 1/2 h 4 

= Mxz( t )  
M~y( t )  fzi+lj,k 1 /2-  fyi+ l,j-- 112,k 4h 4 4h 4 

= Mxz( t )  
fyi+ 1,j + 1/2,k M ~ ( t )  fz ,  + lj,~ + 1,2 - 

4h 4 4h 4 

= - M x z ( t )  
f y i -  1,j 112,k - -  M ~ ( t )  f z l - w , ~ - l e  - 4h 4 4h 4 

- Mx,/( t)  _ - Mxz( t )  
L i -  l , j  + 1/2,k = 4h 4 fz,-1 j.k + 1/2 4h 4 (B 1 ) 

_ Myz(t) Myz(t) 
f y i j  1/2,k+1 - -  4h 4 fzij+l,~- m = 4h 4 

fyld+vz~+l = Myz( t )  fzid+ 1,k+ 1/2 : Myz(t)  
4h 4 4h 4 

fy,j-1,2.~-I = Myz( t )  f z , j - l , k - l n  = Myz( t )  
4h 4 4h 4 

L i , j  + l/2,k-1 = - -  m ~ z ( t )  fz i , j -1,k  + = - -  m y z ( t )  
4h 4 m 4h 4 
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